2,699 research outputs found

    A three-sphere swimmer for flagellar synchronization

    Full text link
    In a recent letter (Friedrich et al., Phys. Rev. Lett. 109:138102, 2012), a minimal model swimmer was proposed that propels itself at low Reynolds numbers by a revolving motion of a pair of spheres. The motion of the two spheres can synchronize by virtue of a hydrodynamic coupling that depends on the motion of the swimmer, but is rather independent of direct hydrodynamic interactions. This novel synchronization mechanism could account for the synchronization of a pair of flagella, e.g. in the green algae Chlamydomonas. Here, we discuss in detail how swimming and synchronization depend on the geometry of the model swimmer and compute the swimmer design for optimal synchronization. Our analysis highlights the role of broken symmetries for swimming and synchronization.Comment: 25 pages, 4 color figures, provisionally accepted for publication in the New Journal of Physic

    The Impact of Trust on Reforms

    Get PDF
    In a constantly changing economic environment a country's ability to undertake institutional reforms is crucial to maintain economic growth and to promote the welfare of its citizens. A wide range of determinants for institutional reforms have been identified. However, the impact of trust on reforms has so far never been addressed. We provide theoretical arguments why trust should influence institutional changes and test the relationship empirically. We find a significant positive relation between trust and reforms with regard to government size, the legal system, and deregulation of private businesses and the labor market. The results in other policy fields are ambiguous. --Trust,Economic Freedom,Policy Reforms

    Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron or correlation physics?

    Full text link
    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K_xpicene and K_xcoronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e. we find no indication for a metallic ground state. Several reasons for this observation are discussed.Comment: 15 pages, 6 figure

    Nematic order by elastic interactions and cellular rigidity sensing

    Full text link
    We predict spontaneous nematic order in an ensemble of active force generators with elastic interactions as a minimal model for early nematic alignment of short stress fibers in non-motile, adhered cells. Mean-field theory is formally equivalent to Maier-Saupe theory for a nematic liquid. However, the elastic interactions are long-ranged (and thus depend on cell shape and matrix elasticity) and originate in cell activity. Depending on the density of force generators, we find two regimes of cellular rigidity sensing for which orientational, nematic order of stress fibers depends on matrix rigidity either in a step-like manner or with a maximum at an optimal rigidity.Comment: 12 pages, 4 figure

    Flagellar swimmers oscillate between pusher- and puller-type swimming

    Full text link
    Self-propulsion of cellular microswimmers generates flow signatures, commonly classified as pusher- and puller-type, which characterize hydrodynamic interactions with other cells or boundaries. Using experimentally measured beat patterns, we compute that flagellated alga and sperm oscillate between pusher and puller. Beyond a typical distance of 100 um from the swimmer, inertia attenuates oscillatory micro-flows. We show that hydrodynamic interactions between swimmers oscillate in time and are of similar magnitude as stochastic swimming fluctuations.Comment: 12 pages, 4 color figure

    Deterministic Random Walks on Regular Trees

    Full text link
    Jim Propp's rotor router model is a deterministic analogue of a random walk on a graph. Instead of distributing chips randomly, each vertex serves its neighbors in a fixed order. Cooper and Spencer (Comb. Probab. Comput. (2006)) show a remarkable similarity of both models. If an (almost) arbitrary population of chips is placed on the vertices of a grid Zd\Z^d and does a simultaneous walk in the Propp model, then at all times and on each vertex, the number of chips on this vertex deviates from the expected number the random walk would have gotten there by at most a constant. This constant is independent of the starting configuration and the order in which each vertex serves its neighbors. This result raises the question if all graphs do have this property. With quite some effort, we are now able to answer this question negatively. For the graph being an infinite kk-ary tree (k3k \ge 3), we show that for any deviation DD there is an initial configuration of chips such that after running the Propp model for a certain time there is a vertex with at least DD more chips than expected in the random walk model. However, to achieve a deviation of DD it is necessary that at least exp(Ω(D2))\exp(\Omega(D^2)) vertices contribute by being occupied by a number of chips not divisible by kk at a certain time.Comment: 15 pages, to appear in Random Structures and Algorithm

    Quasirandom Rumor Spreading: An Experimental Analysis

    Full text link
    We empirically analyze two versions of the well-known "randomized rumor spreading" protocol to disseminate a piece of information in networks. In the classical model, in each round each informed node informs a random neighbor. In the recently proposed quasirandom variant, each node has a (cyclic) list of its neighbors. Once informed, it starts at a random position of the list, but from then on informs its neighbors in the order of the list. While for sparse random graphs a better performance of the quasirandom model could be proven, all other results show that, independent of the structure of the lists, the same asymptotic performance guarantees hold as for the classical model. In this work, we compare the two models experimentally. This not only shows that the quasirandom model generally is faster, but also that the runtime is more concentrated around the mean. This is surprising given that much fewer random bits are used in the quasirandom process. These advantages are also observed in a lossy communication model, where each transmission does not reach its target with a certain probability, and in an asynchronous model, where nodes send at random times drawn from an exponential distribution. We also show that typically the particular structure of the lists has little influence on the efficiency.Comment: 14 pages, appeared in ALENEX'0
    corecore